目的 针对新型平衡舵结构的电偶腐蚀薄弱区域,设计并优化牺牲阳极保护系统,并对保护效果进行评价。方法 基于边界元法,开展新型平衡舵电偶腐蚀仿真研究,分析电偶腐蚀薄弱区域。针对腐蚀薄弱区域,采用经验法设计牺牲阳极保护系统,开展服役初期和服役3 a后阴极保护效果仿真。从涂层破损率和阳极数量对阴极保护效果的影响出发,优化阴极保护系统。开展物理模型试验,对优化后阴极保护系统的保护效果进行评价。结果 电偶腐蚀主要发生在壳体和底座等支撑材料处,必须采取严格的防腐措施。采用经验法设计的牺牲阳极保护系统在服役初期可以使平衡舵保护电位均负于-800 mV,处于良好的阴极保护状态。随着阳极的消耗,服役3 a后,阴极保护系统无法为平衡舵提供有效保护。涂层破损率的增加和阳极数量的减少,都会使平衡舵阴极保护电位正移。通过物理模型试验验证了优化后阴极保护模型的可靠性,对比试验结果,模型的预测误差在5%以内。结论 优化后的阴极保护方案为涂层+8块牺牲阳极,可以在服役3 a涂层破损率达20%的严苛工况下,为平衡舵提供有效阴极保护。优化后的阴极保护系统,铝阳极用量减少30%,有助于节省船舶动力。
Abstract
The work aims to design and optimize the sacrificial anode protection system for the weak area of galvanic corrosion in the new balanced rudder structure, and evaluate the protection effect. Based on the boundary element method, simulation research of galvanic corrosion of new balanced rudder was carried out to analyze the weak area of galvanic corrosion. The sacrificial anode protection system was designed by empirical method for weak corrosion areas, and the cathodic protection effect was simulated at the initial stage of service and three years after service. The cathodic protection system was optimized based on the effect of coating breakage rate and anode number on the cathodic protection effect. Physical model tests were carried out to evaluate the effect of cathodic protection after optimization. Galvanic corrosion mainly occurred in supporting materials such as shell and base, so strict anti-corrosion measures must be taken. The sacrificial anode protection system designed by the empirical method could make the protection potential of the balanced rudder less than -800 mV at the initial stage of service, and was in a good cathodic protection state. With the depletion of the anode, after three years of service, the cathodic protection system could not provide effective protection for the balanced rudder. The increase of coating breakage rate and the decrease of anode number made the cathodic protection potential of balanced rudder shift positively. The reliability of the optimized cathodic protection model was verified by physical model tests. Compared with the experimental results, the prediction error of the model was less than 5%. The optimized cathodic protection solution of coating +8 sacrificial anodes provides effective cathodic protection for the balanced rudder under harsh conditions with a coating failure rate of 20% over three years of service. The optimized cathodic protection system reduces the consumption of aluminum anode by 30%, helping to save ship power.
关键词
新型平衡舵 /
电偶腐蚀 /
数值模拟 /
牺牲阳极阴极保护 /
边界元法 /
实海测试
Key words
new balanced rudder /
galvanic corrosion /
numerical simulation /
sacrificial anode cathodic protection /
boundary element method /
real sea test
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王军, 龚德才, 戴慧. 中国古代的平衡舵与不平衡舵[J]. 大众考古, 2018(11): 31-35.
WANG J, GONG D C, DAI H.Balanced Rudder and Unbalanced Rudder in Ancient China[J]. Popular Archaeology, 2018(11): 31-35.
[2] 何国卫. 中国船尾舵的技术发展[J]. 中国船检, 2018(5): 106-110.
HE G W.Technical Development of Stern Rudder in China[J]. China Ship Survey, 2018(5): 106-110.
[3] 许立坤, 孙明先. 船舶电化学保护技术[M]. 北京: 国防工业出版社, 2022.
XU L K, SUN M X.Electrochemical Protection Technology for Marine Ships[M]. Beijing: National Defense Industry Press, 2022.
[4] 丁国清, 李向阳, 张波, 等. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
DING G Q, LI X Y, ZHANG B, et al.Variation of Free Corrosion Potential of Several Metallic Materials in Natural Seawater[J]. Journal of Chinese Society for Corrosion and Protection, 2019, 39(6): 543-549.
[5] 徐强, 刘亚鹏, 胡鹏飞, 等. 不锈钢与船体钢在海水中的电偶腐蚀行为研究[J]. 装备环境工程, 2022, 19(5): 126-132.
XU Q, LIU Y P, HU P F, et al.Analysis of Galvanic Corrosion Behavior of Stainless Steel and Hull Steel in Seawater[J]. Equipment Environmental Engineering, 2022, 19(5): 126-132.
[6] 刘近增, 邢少华, 钱峣, 等. 20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
LIU J Z, XING S H, QIAN Y, et al.Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(1): 127-134.
[7] 杨学东, 吴晓飞, 尹晓辉, 等. 铝青铜/Ti80合金/2205不锈钢在海水中电偶腐蚀行为研究[J]. 材料开发与应用, 2019, 34(2): 28-35.
YANG X D, WU X F, YIN X H, et al.Study on Galvanic Corrosion of Aluminum Bronze/Ti80 Alloy/2205 Stainless Steel in Seawater[J]. Development and Application of Materials, 2019, 34(2): 28-35.
[8] 陈兴伟, 吴建华, 王佳, 等. 电偶腐蚀影响因素研究进展[J]. 腐蚀科学与防护技术, 2010, 22(4): 363-366.
CHEN X W, WU J H, WANG J, et al.Progress in Research on Factors Influencing Galvanic Corrosion Behavior[J]. Corrosion Science and Protection Technology, 2010, 22(4): 363-366.
[9] 王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望[J]. 中国腐蚀与防护学报, 2010, 30(5): 416-420.
WANG C L, WU J H, LI Q F.Recent Advances and Prospect of Galvanic Corrosion in Marine Environment[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(5): 416-420.
[10] 彭煌, 王俊, 祁黎, 等. 空调换热器在海洋环境条件下服役的大气腐蚀仿真[J]. 系统仿真学报, 2023, 35(4): 899-905.
PENG H, WANG J, QI L, et al.Atmospheric Corrosion Simulation of Air Conditioning Heat Exchanger in Service under Marine Environment[J]. Journal of System Simulation, 2023, 35(4): 899-905.
[11] 陈跃良, 王安东, 卞贵学, 等. 海洋环境下三电极的电偶腐蚀仿真[J]. 北京航空航天大学学报, 2018, 44(9): 1808-1817.
CHEN Y L, WANG A D, BIAN G X, et al.Simulation of Galvanic Corrosion of Three Electrodes in Marine Environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1808-1817.
[12] 石鹏飞, 段国庆, 郭倩, 等. 基于COMSOL的多金属耦合腐蚀行为仿真[J]. 腐蚀与防护, 2022, 43(9): 59-66.
SHI P F, DUAN G Q, GUO Q, et al.Simulation of Multi-Metal Coupling Corrosion Behavior Based on COMSOL[J]. Corrosion & Protection, 2022, 43(9): 59-66.
[13] 王安东, 陈跃良, 黄海亮, 等. 异种金属结构电偶腐蚀的边界元仿真及验证[J]. 南京航空航天大学学报, 2017, 49(S1): 62-68.
WANG A D, CHEN Y L, HUANG H L, et al.Boundary Element Simulation and Verification of Galvanic Corrosion of Dissimilar Metal Structures[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(S1): 62-68.
[14] 滕琳, 陈旭. 海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
TENG L, CHEN X.Research Progress of Galvanic Corrosion in Marine Environment[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(4): 531-539.
[15] 何祯, 张小明, 孟嘉琳, 等. 异种金属连接结构的电偶腐蚀周浸试验及有限元仿真[J]. 材料保护, 2019, 52(6): 64-70.
HE Z, ZHANG X M, MENG J L, et al.Alternate Immersion Testing and Finite Element Simulation of Galvanic Corrosion of Dissimilar Metal Connection Structures[J]. Materials Protection, 2019, 52(6): 64-70.
[16] 任勇, 成光. 海洋环境金属材料腐蚀与防护仿真研究进展[J]. 装备环境工程, 2019, 16(12): 93-98.
REN Y, CHENG G.Research Progress on Corrosion and Protection Simulation of Metal Materials in Marine Environment[J]. Equipment Environmental Engineering, 2019, 16(12): 93-98.
[17] 张宇, 刘亚鹏, 李相波, 等. 冷凝器阴极保护效果评估与仿真预测研究[J]. 材料保护, 2021, 54(4): 27-31.
ZHANG Y, LIU Y P, LI X B, et al.Research on the Simulation Prediction and Evaluation of the Cathodic Protection Effect of Condensers[J]. Materials Protection, 2021, 54(4): 27-31.
[18] 邢少华, 彭衍磊, 张繁, 等. 压载舱阴极保护系统性能仿真及优化[J]. 装备环境工程, 2011, 8(1): 5-9.
XING S H, PENG Y L, ZHANG F, et al.Numerical Simulation and Optimization of Ballast Tank's Cathodic Protection System[J]. Equipment Environmental Engineering, 2011, 8(1): 5-9.
[19] 苏威. 长续航力水下机器人腐蚀问题与防护方法研究[D]. 沈阳: 东北大学, 2017.
SU W.Research on Corrosion Problems and Protection Methods of Long Endurance Underwater Vehicle[D].Shenyang: Northeastern University, 2017.
[20] 曲本文, 朱帅帅, 陈志强, 等. 我国海上风电场中一种导管架阴极保护效果模拟分析研究[J]. 全面腐蚀控制, 2021, 35(9): 45-48.
QU B W, ZHU S S, CHEN Z Q, et al.Simulation Analysis and Research on Cathodic Protection Effect of Jacket in my Country's Offshore Wind Farm[J]. Total Corrosion Control, 2021, 35(9): 45-48.
[21] 方志刚, 黄一. 铝合金船体阴极保护系统的数值模拟仿真[J]. 船舶工程, 2012, 34(4): 73-76.
FANG Z G, HUANG Y.Numerical Simulation of Cathodic Protection System for Aluminum Alloy Hull[J]. Ship Engineering, 2012, 34(4): 73-76.
[22] 中华人民共和国工业和信息化部. 海船牺牲阳极阴极保护设计和安装: CB/T 3855—2013[S]. 北京: 中国船舶工业综合技术经济研究院, 2014.
Ministry of Industry and Information Technology of the People's Republic of China., Design and Installation of Sacrificial Anode Cathodic Protection for Ships: CB/T 3855—2013[S]. Beijing: China Institute of Marine Technology & Economy, 2014.
[23] 中华人民共和国国家质量监督检验检疫总局. 铝-锌-铟系合金牺牲阳极: GB/T 4948—2002[S]. 北京: 中国标准出版社, 2004.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Sacrificial Anode of Al-Zn-In Series Alloy: GB/T 4948— 2002[S]. Beijing: Standard Press of China, 2004.
[24] 邢少华, 张搏, 闫永贵, 等. 涂层破损对船体阴极保护电位分布的影响[J]. 材料开发与应用, 2016, 31(1): 69-73.
XING S H, ZHANG B, YAN Y G, et al.The Influence of Coating Damage on Cathodic Protection Potential Distribution of Ship[J]. Development and Application of Materials, 2016, 31(1): 69-73.
[25] Det Norske Veritas.Cathodic Protection Design: DNV-RP-B401[S]. The Kingdom of Norway: Det Norske Veritas, 2010.